Main Content

Spatial Organization And Molecular Correlation Of Tumor-Infiltrating Lymphocytes Using Deep Learning On Pathology Images

Cell Reports. Volume 23 Issue 1: p181-193.e7, 3 April 2018 10.1016/j.celrep.2018.03.086

Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor infiltrating lymphocytes (TILs), based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining, using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns, and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T-cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment.

Data in the GDC

Supplemental Data

Additional Resources

Instructions for Data Download

Open Access Data

  1. Download the appropriate manifest file from the publication page
  2. Use the manifest file to download data using the GDC Data Transfer Tool (DTT) or the GDC API

Controlled Access Data

  1. Download the appropriate manifest file from the publication page
  2. Download a token from the GDC Data Portal
  3. Use the manifest file and token to download data using the GDC DTT or the GDC API

For assistance, please contact the GDC Help Desk: support@nci-gdc.datacommons.io.