Main Content

Molecular Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers

Cell Reports. Volume 23 Issue 1: p255–269.e4, 3 April 2018 10.1016/j.celrep.2018.03.077

Metabolic reprogramming provides critical information for clinical oncology. Using molecular data of 9,125 patient samples from The Cancer Genome Atlas, we identified tumor subtypes in 33 cancer types based on mRNA expression patterns of seven major metabolic processes and assessed their clinical relevance. Our metabolic expression subtypes correlated extensively with clinical outcome: subtypes with upregulated carbohydrate, nucleotide, and vitamin/cofactor metabolism most consistently correlated with worse prognosis, whereas subtypes with upregulated lipid metabolism showed the opposite. Metabolic subtypes correlated with diverse somatic drivers but exhibited effects convergent on cancer hallmark pathways and were modulated by highly recurrent master regulators across cancer types. As a proof-of-concept example, we demonstrated that knockdown of SNAI1 or RUNX1—master regulators of carbohydrate metabolic subtypes—modulates metabolic activity and drug sensitivity. Our study provides a system-level view of metabolic heterogeneity within and across cancer types and identifies pathway cross-talk, suggesting related prognostic, therapeutic, and predictive utility.

Data in the GDC

Supplemental Data

Additional Resources

Instructions for Data Download

Open Access Data

  1. Download the appropriate manifest file from the publication page
  2. Use the manifest file to download data using the GDC Data Transfer Tool (DTT) or the GDC API

Controlled Access Data

  1. Download the appropriate manifest file from the publication page
  2. Download a token from the GDC Data Portal
  3. Use the manifest file and token to download data using the GDC DTT or the GDC API

For assistance, please contact the GDC Help Desk: support@nci-gdc.datacommons.io.