Main Content

Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers.

Citation TBD.

To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type–specific features. Using organ-matched healthy tissues, we identified the “nearest-healthy” cell types in diverse cancers, demonstrating that the chromatin signature of basal-like–subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.

Data in the GDC

Supplemental Data

Instructions for Data Download

Open Access Data

  1. Download the appropriate manifest file from the publication page
  2. Use the manifest file to download data using the GDC Data Transfer Tool (DTT) or the GDC API

Controlled Access Data

  1. Download the appropriate manifest file from the publication page
  2. Download a token from the GDC Data Portal
  3. Use the manifest file and token to download data using the GDC DTT or the GDC API

For assistance, please contact the GDC Help Desk: support@nci-gdc.datacommons.io.